Comparative study between MgO-impregnation and mechanical mixture effects on the CO₂ adsorption over NaY zeolites

Hadjer BEKHTI and Youcef BOUCHEFFA

Laboratoire d'Etude Physico-Chimique des Matériaux et Application à l'Environnement (LEPCMAE), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, Bab-Ezzouar, Algiers, Algeria. h bekhti@yahoo.com

Abstract. MgO-Impregnated NaY zeolites and mechanical mixture are prepared from NaY zeolite, using MgO as a basic agent. Textural parameters are determined by N₂ adsorption–desorption isotherms at –196 °C. The isotherms of impregnated zeolites exhibit type Ia isotherm, while mechanical mixtures show a combination of the type Ia and IVa. CO_2 adsorption over these modified zeolites is studied at 30, 35, 40, 45 °C. Results show that 2% of MgO-impregnation and 5% of mechanical mixture seem to be the better rates for the CO_2 retention. The evolution of the isosteric heats reveals the heterogeneity of adsorption sites of modified zeolites. In addition, most of models used in this work to fit experimental isotherms showed a good correlation with the adsorption isotherms. This correlation is in the following order: du-al–site Langmuir > Sips > Toth > Jensen–Seaton > UNILAN > Langmuir > Freundlich.

Keywords: CO₂ Adsorption, Impregnated NaY Zeolite, Mechanical Mixture.

2